Chinese Scientists to Pioneer First Human CRISPR Clinical Trial

  • Chinese Team Begins First CRISPR-Based Anticancer Immunotherapy Clinical Study
  • US Consortium’s CRISPR Clinical Study OK’d by NIH Panel
  • Survey Indicates More Worry than Enthusiasm for Gene-Editing in Babies
Taken from

Taken from

Regular readers of my blog will recall a number of previous postings on gene editing using CRISPR-Cas9 (aka CRISPR), which has rapidly become the hottest trend in nucleic acid-based biotechnology and medical research. That opinion is partly based on the fact that this relatively new technology has already amassed thousands of publications, including 1,250 in 2015 alone! Additional evidence follows from the numerous start-up and established biopharma companies pursuing CRISPR-based therapeutics, which is “the biggest biotech discovery of the century” according to one report.

Now, even more exciting developments for CRISPR are on the horizon. Chinese researchers are poised for the first human clinical trial using CRISPR, and an analogous study in the US awaiting FDA approval. Both of these trials involve forms of cancer immunotherapy, which is a very hot field in itself, and is briefly introduced in the next section.

Cancer Immunotherapy

Cancer immunotherapy is the use of the immune system to treat cancer either actively, passively, or by a combination of these approaches, which exploit the fact that cancer cells often have macromolecules on their surface that can be detected by the immune system (aka tumor-associated antigens, TAAs). Active immunotherapy directs the immune system to attack tumor cells by targeting TAAs, whereas passive immunotherapies enhance existing anti-tumor responses and include the use of monoclonal antibodies, lymphocytes and cytokines.

Numerous antibody therapies have been approved by the FDA and other regulatory authorities worldwide. In contrast, active immunotherapies, which usually involve the removal of immune cells from the blood or from a tumor for reintroduction to the patient, have lagged in such approvals. In fact, the only US-approved cell-based therapy is Dendreon’s Provenge®, for the treatment of prostate cancer. A recent series of NY Times articles highlights some powerful examples of cancer immunotherapy, especially from the perspective of interviews with patients and their physicians.

Taken from

Taken from

For the purpose of this blog, I’ll add that adoptive T-cell therapy is a form of passive immunization by the transfusion of T-cells, which are found in blood and tissue and usually activate when they find “foreign” pathogens. These pathogens can be either infected cells, or antigen presenting cells present in tumor tissue, where they are known as tumor infiltrating lymphocytes. Although these cells can attack the tumor, the environment within the tumor is highly immunosuppressive, preventing immune-mediated tumor death.

As depicted below, T-cells specific to a tumor antigen can be removed from a tumor sample or filtered from blood. Subsequent activation and culturing is performed ex vivo, with the resultant cells being reinfused. Importantly, activation can take place through genetic engineering, such as gene editing by CRISPR.

Cancer specific T-cells can be obtained by fragmentation and isolation of tumor infiltrating lymphocytes, or by genetically engineering cells from peripheral blood. The cells are activated and grown prior to transfusion into the recipient (tumor bearer). Taken from

Cancer specific T-cells can be obtained by fragmentation and isolation of tumor infiltrating lymphocytes, or by genetically engineering cells from peripheral blood. The cells are activated and grown prior to transfusion into the recipient (tumor bearer). Taken from

CRISPR Goes Clinical in China

As I write this post, Chinese scientists at Sichuan University’s West China Hospital in Chengdu will reportedly become the first in the world to inject people with cells modified using the CRISPR gene-editing method. This landmark trial will involve patients with metastatic non-small cell lung cancer who have not responded to chemotherapy, radiation therapy and/or other treatments.

The team will extract T cells from the blood of the trial participants and then use CRISPR to knock out a gene encoding a protein called PD-1 that normally regulates the T cell’s immune response to prevent it from attacking healthy cells. As depicted below, this so-called checkpoint has been targeted by small molecule inhibitors (anti PD-1), but with somewhat limited success so far—notably including failure of a would-be billion-dollar drug (Opdivo®) recently reported by Bristol-Myers Squibb. Nevertheless, the presently envisaged PD-1 gene-edited cells will be amplified in the lab and re-introduced into the patient’s bloodstream to circulate and, hopefully, attack the cancer.

Taken from

Taken from

Potential Concerns of CRISPR Clinical Trials

While the Chinese trial may be groundbreaking, it is not without risk. There is concern that the edited T-cells could attack normal tissue as it’s well documented that CRISPR can result in gene edits at the wrong place in the genome. To help mediate this risk, the T-cells will be validated by biotechnology company MedGenCell—a collaborator on the trial—to ensure that the correct gene is knocked out before the cells are re-introduced into patients.  Since the primary purpose of this phase one trial is to determine if the approach is safe, participants will be closely monitored for side effects, and researchers will pay close attention to biological markers in the blood.

Some may say that this type of trial in humans is premature, but China has always tried to be a leader in CRISPR research. Carl June, a clinical researcher in immunotherapy at the University of Pennsylvania in Philadelphia explains, ‘China places a high priority on biomedical research.’ And Tetsuya Ishii, a bioethicist in Japan, is quoted in Nature magazine as saying that ‘When it comes to gene editing, China goes first.”

Initial CRISPR Clinical Trial in USA Awaiting Review Board and FDA Approvals

While the Chinese team seems positioned to be the first to conduct a CRISPR clinical trial, the US isn’t far behind. As reported earlier this summer, the Recombinant DNA Research Advisory Committee (RAC) at the NIH has approved an analogous—but genetically more complex—proposal to use CRISPR-edited T cells for cancer immunotherapy. The RAC reviews all proposals for human trials involving modified DNA that are conducted in the United States, and the investigators now have to convince review boards at their own institutions, and the FDA, to allow the trial. This will hopefully be done by the end of 2016.

The proposed trial is a collaborative effort involving the University of Pennsylvania, M.D. Anderson Cancer Center in Texas, and the University of California, San Francisco. This trial will be funded by a $250-million immunotherapy foundation formed in April 2016 by former Facebook president Sean Parker. According to a news item in Nature, The University of Pennsylvania will produce the edited cells, and will recruit and treat patients alongside the collaborating medical centers in Texas and California.

In this study, researchers will perform three CRISPR edits with T cells from patients with several types of cancers: 1. a gene for a protein engineered to detect and target cancer cells will be inserted, 2. a natural T-cell protein that could interfere with this process will be removed and 3. the gene for a protein that identifies the T cells as immune cells and prevents the cancer cells from disabling them will be removed. The researchers will then infuse the edited cells back into the patient.

Both of the studies being performed by the Chinese and US teams are very exciting to me. I will be paying close attention to the progress of these studies over the next few months and hope to report back to you with some very interesting and ground breaking results.

Survey Indicates Public Concern in the US About Gene Editing in Babies

A Pew Research Center pole focusing on concerns about gene editing was recently reported in Nature. The poll surveyed more than 4,700 people in the United States and the results indicate that more people are concerned than enthusiastic about gene editing.

The quadrants below (from 0-100%) show responses to the question, “How worried or enthusiastic do you feel about gene editing to reduce disease risk in babies?”

Taken from

Taken from

While these findings speak for themselves, I hasten to add that this same pole also asked “Have you heard or read about this topic?” The following replies (in quadrants from 0-100%) indicate that a substantial percentage of respondents who have not at all read about gene editing nevertheless expressed either worry or enthusiasm for gene editing. Ditto for those who read a little about gene editing.


It would seem, then, that we should take this poll with a grain (or two) of salt as it apparently includes a substantial amount of uninformed opinion. This is not too surprising given the complex nature of gene editing and it’s relatively new position in research. We can see from the results of this poll that a significant amount of education may be needed to garner increased public support for gene editing. Hopefully, the results of the studies highlighted above will begin to pave this road.

Hope for the Best but Expect Complications

This section heading, which summarizes my parting comments about the advent of CRISPR-enabled clinical trials, is based upon my having participated in several decades of research on nucleic acid-based concepts for radically different approaches to traditional small-molecule therapeutics. First was the idea of using chemically modified antisense oligonucleotides to block gene expression, which encountered non-specificity issues, low potency, delivery, and a host of other issues that took two decades to sort through. Then there was the idea of using chemically modified short-interfering RNA (siRNA) for modulating gene expression via RNA interference (RNAi). This, too, encountered similar problems in reaching the clinic. Ditto for anti-microRNAs (antagomirs).

I’m hoping that CRISPR-based therapies meet with success far faster—and prove to be affordable to society. I won’t, however, be surprised if progress is slow—and quite expensive.

Are you excited about potential CRISPR-based therapies? Do you have concerns about their safety and efficacy? Do you believe the general public is ready to accept gene editing therapies? Please share your thoughts as your comments are always welcome.

Update on Zika Virus Detection by RT-PCR

  • Various RT-PCR Assays for Zika Virus Have now Received Emergency Use Authorization (EUA) from the FDA
  • Quest Diagnostics’ Assay Approved by FDA for General Use as a Zika Test
  • Troubled Theranos Touts New “miniLab” for Zika EUA
  • Vaccine Development Progressing Albeit Relatively Slowly
Aedes aegypti mosquito. Taken from

Aedes aegypti mosquito. Taken from

In January 2016, I posted a blog about the then emerging public awareness of Zika virus (ZIKV), which is spread by the bite of infected mosquitos—primarily the Aedes aegypti mosquito. Sadly, ZIKV can be passed from a ZIKV-infected pregnant woman to her fetus leading to development of a brain defect (microcephaly) and/or other malformities. Moreover, ZIKV is now associated with sexual transmission and blood transfusion. This is scary news.

This update was prompted by the additional fact that ZIKV is on the rise and there is still no vaccine, according to the Centers for Disease Control and Prevention (CDC)—my “go to” source for loads of authoritative information about this infectious disease. Weekly updated ZIKV-infection “case counts” in US States and US Territories were given as ~1,200 and ~6,500, respectively on Aug 10th, and increasing to ~3,400 and ~20,000 on Sep 21st —only 6 weeks later!

As I pointed out in my previous blog on ZIKV, absent an anti-ZIKV vaccine, there is considerable interest in mosquito abatement as well as early detection, notably by reverse-transcription PCR (RT-PCR) of this RNA Flavivirus. Now that Zika infection by mosquitos in Florida has been found, leading to several CDC warnings, I thought it would be both apropos and technically interesting to provide the following update on ZIKV structure and RT-PCR.

ZIKV Genome and Structure

As of last month, my PubMed search of “Zika [Title/Abstract] AND RT-PCR [Anywhere]” gave 55 publications. Incidentally, there are now a number of Zika genome sequencing publications, such as this lead reference. It’s worth noting that ZIKV genome sequencing enables monitoring the potential evolution of new genomic variants that might foil existing RT-PCR assays and guide the selection of new primers for RT-PCR.

ZIKV genome. Taken from with permission from SIB Swiss Institute of Bioinformatics, ViralZone

ZIKV genome. Taken from with permission from SIB Swiss Institute of Bioinformatics, ViralZone

It’s also worth pointing out that Zika’s overall molecular capsid structure is enveloped, spherical, and has a diameter of ~40 nm in diameter, as depicted below in schematic form, and pictured in the accompanying electron microscopic image. The surface proteins are arranged in an icosahedral-like symmetry.

ZIKV capsid structure. Taken from with permission from SIB Swiss Institute of Bioinformatics, ViralZone

ZIKV capsid structure. Taken from with permission from SIB Swiss Institute of Bioinformatics, ViralZone

This is a transmission electron micrograph (TEM) of ZIKV, which is a member of the family Flaviviridae. Virus particles are ~40 nm in diameter, with an outer envelope, and an inner dense core (see above). The arrow identifies a single virus particle. Taken from

This is a transmission electron micrograph (TEM) of ZIKV, which is a member of the family Flaviviridae. Virus particles are ~40 nm in diameter, with an outer envelope, and an inner dense core (see above). The arrow identifies a single virus particle. Taken from


In the interest of giving explicit credit to various investigative groups who have developed RT-PCR assays for ZIKV, here are links and short snippets I’ve selected from publications, in chronological order, found in the aforementioned PubMed search. Interested readers are encouraged to check out the original publication for details.

The first report of an RT-PCR assay for ZIKV appears to be by Faye et al. in 2008 at the Institut Pasteur de Dakar in Senegal, who targeted the envelope protein coding region and tested ZIKV isolates previously collected over a 40-year period from various African countries and hosts. The assay’s detection limit and repeatability were respectively 7.7pfu/reaction and 100% in serum; none of 19 other Flaviviruses tested were detected. Faye et al. in 2013 extended this work to include quantitative RT-PCR detection of ZIKV and evaluation with samples from field-caught mosquitoes.

Kinetics of ZIKV detection in urine compared to serum from 6 patients was described by Gourinat et al. in 2015 at the Institut Pasteur, Noumea, New Caledonia using RT-PCR primers and probes previously reported by others. Urine samples were positive for ZIKV more than 10 days after onset of disease, which was a notably longer period than 2-3 days for serum samples. These researchers concluded that urine samples are useful for diagnosis of ZIKV infections, and are preferred to serum wherein virus titer diminishes more rapidly.

Musso et al. in 2015 working in Tahiti, French Polynesia with 1,067 samples collected from 855 patients presenting symptoms of Zika fever found that analysis of saliva samples increased the rate of detection of ZIKV at the acute phase of the disease compared to serum samples. They noted that saliva was of particular interest when blood was difficult to collect, especially for children and neonates.

Most recently, Xu et al. in 2016 in China reported the development of a SYBR Green (intercalator dye)-based qRT-PCR assay for detection of ZIKV. Although their results indicate that the assay is specific, it’s important to note that SYBR-type detection can be subject to nonspecific artifacts, for which TriLink’s proprietary CleanAmp™ Primers can be investigated to potentially ameliorate such problems, as discussed in this downloadable pdf publication by TriLink researchers.

ZIKV In Vitro Diagnostic Assays

As detailed elsewhere, the Secretary of Health and Human Services (HHS) earlier this year determined that “there is a significant potential for a public health emergency that has a significant potential to affect national security or the health and security of United States citizens living abroad and that involves Zika virus.” The Secretary of HHS further declared that “circumstances exist justifying the authorization of the emergency use of in vitro diagnostics for detection of Zika virus…”.

The following RNA-based assays and suppliers are currently listed by the FDA for this Emergency Use Authorization (EUA):

  • xMAP® MultiFLEX™ Zika RNA Assay (Luminex Corporation)
  • VERSANT® Zika RNA 1.0 Assay (kPCR) Kit (Siemens Healthcare Diagnostics Inc.)
  • Zika Virus Real-time RT-PCR Test (Viracor-IBT Laboratories, Inc.)
  • Aptima® Zika Virus Assay (Hologic, Inc.)
  • RealStar® Zika Virus RT-PCR Kit U.S. (Altona Diagnostics)
  • Zika Virus RNA Qualitative Real-Time RT-PCR (Focus Diagnostics)
  • Trioplex Real-time RT-PCR Assay (CDC)

Among these, two are particularly notable—in my opinion. Trioplex Real-time RT-PCR Assay is a multiplexed laboratory test developed by the CDC to simultaneously detect ZIKA, dengue virus, and chikungunya virus RNA, each of which can be transmitted primarily by Aedes aegypti mosquitos to cause infections with similar symptoms. Consequently, it is useful to have a single test that can detect each of these viruses in the same sample. Full details for the Trioplex assay are provided in a 40-page downloadable pdf from the CDC at this link.

In brief, this CDC-developed test uses virus-specific primer pairs and fluorogenic hydrolysis probes each differentially dual-labeled with fluorescent reporter and quencher dyes for in vitro detection of complementary DNA (cDNA). The detection follows reverse-transcription of RNA isolated from clinical specimens including serum, cerebral spinal fluid, urine, and amniotic fluid. It’s worth pointing out that I subsequently found a publication in 2016 by several collaborating academic groups regarding an analogous triplex RT-PCR assay for the same three viruses.

The other notable assay is Zika Virus RNA Qualitative Real-Time RT-PCR developed by Focus Diagnostics, which in April 2016 was the first of the aforementioned ZIKV tests to receive authorization by the FDA for use by qualified labs to detect ZIKV RNA in blood samples of those meeting CDC clinical criteria or of people who may have lived in or traveled to an affected location or had other exposure to the virus. Quest Diagnostics, the parent company of Focus Diagnostics, announced it would make the test broadly available to physicians, including those in Puerto Rico in May 2016.

ZIKV EUA Sought by Theranos for Its new “miniLab”

Theranos, which has been in the news regarding troubles over its stealthy proprietary system for finger-stick blood tests, appears to be pivoting its strategic plans. It announced at the August 2016 American Association of Clinical Chemistry Meeting its R&D for a new, fully automated miniLab system, including analytical and method comparison results of its ZIKV nucleic acid-amplification-based assay.

According to its press release, the company collected finger-stick samples from subjects, including people in the ZIKV-infested Dominican Republic, and shipped those to Palo Alto, California to run on the miniLab. Although I was unable to obtain these particular results, I did find the following figure at the TechCrunch website showing functional components of the miniLab along with an article by Sarah Buhr that’s worth a quick read, in my opinion.

Taken from

Taken from

According to the aforementioned Theranos press release, the company has submitted assay validation data for this Zika assay to the FDA for an EUA. The company also states that it is unaware of any currently available capillary (i.e. finger-stick) test for ZIKV.

I’ll stay tuned for future general information about the miniLab, as well as information specifically related to ZIKV. If I hear of anything, I’ll add as a comment here or in a new post with technical details about its nucleic acid assays.

ZIKV Vaccine Status

I hope this blog has convinced you that RT-PCR of ZIKV has provided improved molecular diagnostics. I’m guessing, that like me, you find it unfortunate that there isn’t a proven anti-ZIKA vaccine as of yet. This is especially frustrating given the fact that Zika disease has been known for more than 50 years, and that it is evidently on the rise globally, including in the USA according to regularly updated CDC statistics.

In February 2016, the Obama administration requested $1.9 billion in funding for the NIH to develop a ZIKV vaccine. The US Congress continues to be deadlocked by partisan politics despite the fact that Florida state and local officials are scrambling to contain the ZIKV outbreak in Miami Beach. This outbreak poses a serious threat to the health of residents, as well to visitors who drive the region’s $24 billion-a-year tourism industry.

Nevertheless, some progress has been reported for US studies in monkeys, and US-based Inovio says it’s received FDA approval to begin studies in humans. Outside the US, Sanofi Pasteur in France is said to be poised for initiating its trials in humans, and French biotech company Valneva is reported to have succeeded in generating a ‘highly purified inactivated vaccine candidate’ using the same technical approach it used for its encephalitis vaccine that is marketed in the United States and Europe.

Lagging—dare I say “glacially slow”—action against ZIKV by the World Health Organization is quite disappointing to me, and is reminiscent of what I’ve commented on in an earlier blog concerning this bureaucracy’s ineffective response to the Ebola virus. If I had my druthers, TriLink’s previously announced engagement by Battelle in development of Ebola mRNA vaccine would somehow materialize for a Zika mRNA vaccine. In this regard, GlaxoSmithKline is reported to be preparing research studies alongside the NIH’s Vaccine Research Center to test a self-amplifying mRNA vaccine technology for Zika. Interested readers can check out this link to a fascinating PNAS publication by Geall et al. on biosynthetic self-amplifying mRNA vaccines delivered in lipid nanoparticles.

As always, your comments are welcomed.


Taken from Fleming et al. (2016) ACS Infectious Diseases

Taken from Fleming et al. (2016) ACS Infectious Diseases

One of my previous posts featured recent elucidation of biologically functional G-quadraplexes in living cells. Consequently, it’s apropos to mention here that Fleming et al. at the University of Utah have just now published the first analysis of potential G-quadruplex sequences (PQS) in the RNA genome of ZIKV. As depicted in this artistic cartoon, several PQS were found, with the most stable located near the end of the 3’ untranslated region (3′-UTR). Importantly, these investigators propose a rationale for screening G-quadruplex-binding compounds as a completely new class of anti-ZIKV drug candidates. In my opinion, this is a great example of how basic biochemical research can lead to new strategies for much needed antiviral drugs.

RNA World Revisited

  • Scripps Researchers ‘Evolve’ an RNA-Amplifying RNA Polymerase 
  • It’s Used for First Ever All-RNA Amplification Called “riboPCR”
  • TriLink Reagent Plays a Role in this Remarkably Selective in Vitro Evolution Method 
Prof. Gerald Joyce & Dr. David Horning. Photo by Madeline McCurry-Schmidt. Taken from

Prof. Gerald Joyce & Dr. David Horning. Photo by Madeline McCurry-Schmidt. Taken from

Those of you who regularly read my blog will recall an earlier posting on “the RNA World,” which was envisioned by Prof. Walter Gilbert in the 1980s as a prebiotic place billions of years ago when life began without DNA. That post recommended reading more about this intriguing hypothesis by consulting a lengthy review by Prof. Gerald Joyce. Now, Prof. Joyce and postdoc David Horning have advanced the hypothesis one step further by reporting the first ever amplification of RNA by an in vitro-selected RNA polymerase, thus providing significant supportive evidence for the RNA World. Following are their key findings, which were enabled in part by a TriLink reagent—read on to find out which one and how!

In Vitro Evolution of an RNA Polymerase

Horning & Joyce designed an in vitro selection method to chemically “evolve” an RNA polymerase capable of copying a relatively long RNA template with relatively high fidelity. The double emphasis on “relatively” takes into account that the RNA World would have many millions of years to evolve functionally better RNA polymerases capable of copying increasingly longer RNA templates with increasingly higher fidelity.

As depicted below, they started with a synthetic, highly structured ribozyme (black) wherein random mutations were introduced throughout the molecule at a frequency of 10% per nucleotide position to generate a population of 1014 (100,000,000,000,000) distinct variants to initiate the in vitro evolution process. Step 1 involved 5’-5’ click-mediated 1,2,3-trazole (Ø) attachment of an 11-nt RNA primer (magenta) partially complementary to a synthetic 41-nt RNA template (brown) encoding an aptamer that binds guanosine triphosphate (GTP). In Steps 2 and 3, the primer hybridizes to template and is extended by polymerization of A, G, C and U triphosphates (cyan).

Taken from Horning & Joyce, Proc. Natl. Acad. Sci., 2016

Taken from Horning & Joyce, Proc. Natl. Acad. Sci., 2016

GTP aptamer showing red and cyan sequences corresponding to above cartoon. Taken from Horning & Joyce, Proc. Natl. Acad. Sci., 2016

GTP aptamer showing red and cyan sequences corresponding to above cartoon. Taken from Horning & Joyce, Proc. Natl. Acad. Sci., 2016

Step 4 involves binding of aptameric structures to immobilized GTP (green), then photocleavage of the 1,2,3-triazole linkage in Step 5, followed by reverse transcription to cDNA and conventional PCR in Step 6 for transcription into ribozymes in Step 7. Twenty-four rounds of this evolution by selection were carried out, progressively increasing the stringency by increasing the length of RNA to be synthesized by decreasing the time allowed for polymerization. By the 24th round, the population could readily complete the GTP aptamer shown below. Subsequent cloning, sequencing and screening were then used to characterize the most active polymerase, which was designated “24-3.”

The TriLink “Connection”

2'-Azido-dUTP (aka 2'-azido-UTP)

2′-Azido-dUTP (aka 2′-azido-UTP)

The aforementioned in vitro evolution process actually involves tons of experimental details that interested readers will need to consult in the published paper, which is accompanied by an extensive Supporting Information section. In the latter, a subsection titled Primer Extension Reaction describes 3’ biotinylation of the template RNA strand (brown in above scheme) using TriLink “2’-azido-UTP” (more properly named 2’-azido-dUTP) and yeast poly(A) polymerase, followed by click connection of the RNA template’s 3’-terminal 2’-azido moiety to biotin-alkyne. This very clever functionalization of the RNA template strand allowed for subsequent capture of the double-stranded primer extension reaction products on streptavidin-coated beads, followed by elution of the desired nonbiotinylated strand for GTP aptamer selection (Step 4 above).

Properties of RNA Polymerase 24-3

Needless to say—but I will—enzymologists and RNA aficionados will undoubtedly be interested in musing over the kinetic and fidelity properties of RNA polymerase 24-3.

The rate of 24-3 polymerase catalyzed addition to a template-bound primer was measured using an 11-nt template that is cited extensively in the literature to evaluate various ribozymes. It was found that the average rate of primer extension by 24-3 is 1.2 nt/min, which is ∼100-fold faster than that of the starting ribozyme polymerase randomly mutagenized for in vitro selection.

The NTP incorporation fidelities of the starting and 24-3 ribozyme polymerases on this 11-nt test template, at comparable yields of product, are 96.6% and 92.0%, respectively. Horning & Joyce noted that the higher error rate of 24-3 is due primarily to an increased tendency for G•U wobble pairing.

Phenylalanyl tRNA. Taken from Horning & Joyce, Proc. Natl. Acad. Sci., 2016

Phenylalanyl tRNA. Taken from Horning & Joyce, Proc. Natl. Acad. Sci., 2016

Other longer RNA templates having various base compositions or intramolecular structures were also studied, with the stated “final test of polymerase generality” being use of 24-3 to synthesize yeast phenylalanyl tRNA from a 15-nt primer (in red right). The authors humorously describe the results as follows:

“Despite the stable and complex structure of the template, full-length tRNA was obtained in 0.07% yield after 72 h. This RNA product is close to the limit of what can be achieved with the polymerase, but is likely the first time a tRNA molecule has been synthesized by a ribozyme since the end of the RNA world, nearly four billion years ago.”

Exponential Amplification of RNA

PCR is the most widely used method for amplifying nucleic acids, and involves repeated cycles of heat denaturation and primer extension. The 24-3 RNA polymerase was used to carry out PCR-like amplification, but in an all-RNA system (named riboPCR by Horning & Joyce) using A, G, C, and U triphosphates and a 24-nt RNA template composed of two 10-nt primer-binding sites flanking the sequence AGAG. Somewhat special conditions were employed:

  • The concentration of Mg2+ was reduced to minimize spontaneous RNA cleavage
  • PEG8000 was used as a “molecular crowding” agent to improve ribozyme activity at the reduced Mg2+ concentration
  • Tetrapropylammonium chloride was added to lower the melting temperature of the duplex RNA

Under these conditions, 1 nM of the 24-nt RNA template was driven through >40 repeated thermal cycles, resulting in 98 nM newly synthesized template and 106 nM of its complement, corresponding to 100-fold amplification. Sequencing of the amplified products revealed that the central AGAG sequence was largely preserved, albeit with a propensity to mutate the third position from A to G, reflecting the low barrier to wobble pairing.

Amplification of a 20-nt template (without the central insert) was monitored in real time, using FRET from fluorescently labeled primers, and input template concentrations ranging from 10 nM to 1 pM. The resulting amplification profiles shown in the paper are typical for real-time PCR, shifted by a constant number of cycles per log-change in starting template concentration. A plot of cycle-to-threshold vs. logarithm of template concentration, also shown in the paper, was linear across the entire range of dilutions indicating exponential amplification of the template RNA with a per-cycle amplification efficiency of 1.3-fold.

Implications for the Ancient RNA World

It would be an injustice to Horning & Joyce if I would try to paraphrase their concluding discussion of this investigation, so here is what they say:

The vestiges of the late RNA world appear to be shared by all extant life on Earth, most notably in the catalytic center of the ribosome, but most features of RNA-based life likely were lost in the Archaean era. Whatever forms of RNA life existed, they must have had the ability to replicate genetic information and express it as functional molecules. The 24-3 polymerase is the first known ribozyme that is able to amplify RNA and to synthesize complex functional RNAs. To achieve fully autonomous RNA replication, these two activities must be combined and further improved to provide a polymerase ribozyme that can replicate itself and other ribozymes of similar complexity. Such a system could, under appropriate conditions, be capable of self-sustained Darwinian evolution and would constitute a synthetic form of RNA life.

Applications for Today’s World of Biotechnology

The aforementioned report by Horning & Joyce has received wide acclaim in the scientific press and world-wide public media as supporting the existence of a prebiotic RNA World, billions of years ago, from which life on Earth evolved.

While the academic part of my brain, if you will, fully appreciates the significance of these new insights on “living” RNA eons ago, the technical applications part of my brain is more piqued by possible practical uses of all-RNA copying or all-RNA riboPCR.

I, for one, plan to muse over possible applications of such all-RNA systems in today’s world of biotechnology, and hope that you do too, and are willing to share any ideas as comments here.

Spartan Cube—The World’s Smallest Molecular Diagnostic Device

  • Records Are Meant to be Broken—Including Those for PCR Diagnostics
  • Spartan Bioscience Claims It’s Cube is World’s Smallest Mol Dx Device 
  • The Cube was Launched at the Recent AACC Clinical Lab Expo 


[22]-annulene. Taken from

[22]-annulene. Taken from

In the spirit of the recent Olympic games, and as the saying goes—records are meant to be broken. When I was in grammar school, a big buzz in sports was who would be the first to break the 4-minute mile; answer: Roger Bannister in 3 minutes and 59.4 seconds in 1954—now 17 sec faster. In my college craze days, it was how many persons can fit into a Volkswagen Beetle; answer: I couldn’t find the first feat, but the current record is 20 crammed into an old style Beetle in 2010. Then during my graduate organic chemistry studies, there was interest in synthesizing increasingly larger annulenes—completely conjugated CnHn monocyclic hydrocarbons akin to benzene (n=6); answer: [22]-annulene with n=22 (see below) synthesized by F. Sondheimer. But I digress…

Our collective fascination with records—and beating them—also applies to all sorts of instruments for health-related sciences, such as the most powerful MRI imaging systems (currently from GE) or longest-DNA-sequencing system (currently from PacBio). Due to the seemingly endless utility of PCR, there is a continual stream of claims for the fastest PCR system (currently from BJS Biotechnologies) or—more to point herein—smallest PCR system.

To wit, regular readers of my blog will recall an April 2016 post titled World’s Smallest Real-Time PCR Device, which referred to a hand-held system reported by Ahrberg et al. for real-time, quantitative PCR (qPCR). That system is pictured below next to the original system commercialized by ABI in the 1990s that weighed 350 pounds and was 7 feet long!

Left: World’s smallest real-time PCR device. (Taken from Ahrberg et al). Right: Applied Biosystems 7700 real-time PCR system. (Taken from

Left: World’s smallest real-time PCR device. (Taken from Ahrberg et al). Right: Applied Biosystems 7700 real-time PCR system. (Taken from

It seems that PCR records fall as easily as those in the Olympics. Not even a year later, Ahrberg’s claim is being challenged by Canadian company Spartan Bioscience, which recently introduced its Cube device at the 2016 AACC Annual Scientific Meeting & Clinical Lab Expo. Following are some technical details that I thought were worth sharing.

Taken from

Taken from

Cube Facts

Given its amazingly small size of only 4 x 4 x 4 inches, there apparently has been some remarkable engineering achievements to be able to squeeze-in what’s needed for the rapid heating and cooling required for PCR thermal cycling. Ditto for the optics required to enable fluorescence detection. Like other relatively small devices intended for emerging Point-of-Care (POC) applications in a doctor’s office or clinic, there is wireless connectivity to a laptop that serves as the user interface for operation and data analysis, as well as a power source for the Cube via a USB cable.

You’re likely wondering by now how much the Cube will sell for. Unfortunately, I was not able to obtain a list price from Spartan’s CEO at this time, so we’ll all have to wait and see.  I’ll post the answer as a comment to this blog as soon as I find out the price.

Inside the Cube—Perhaps 

I actually don’t know exactly what’s inside the Cube, but some possibilities of what might be are as follows. I’ve based these educated guesses on a Spartan Bioscience patent (US pat. no. 8,945,880) by Paul Lem and others entitled Thermal cycling by positioning relative to fixed-temperature heat source. As depicted below, a hot block provides a heat source at a fixed temperature to thermally cycle PCR reaction vessels that can be precisely moved by a micrometer to and from the hot block in a repeated manner.

Taken from US patent no. 8,945,880

Taken from US patent no. 8,945,880

As for how fluorescence might be measured to monitor each PCR reaction in real-time, one possibility is depicted below. Basically, each reaction tube is proximate to excitation light from an LED, and has a slit at the bottom for emitted light that is collected and processed into a typical real-time PCR curve.

Taken from US patent no. 8,945,880

Taken from US patent no. 8,945,880

Before the Cube

Prior to launching the Cube, Spartan Bioscience has been selling an FDA-Cleared in vitro diagnostic product called Spartan RX, which is also relatively compact, and carries out fully automated—“cheek swab-to-result”—PCR analysis of certain Cytochrome P450 2C19 (CYP2C19) genotypes. Roughly 1-in-3 people carry CYP2C19 mutations that can impair metabolism of a wide variety of commonly used drugs. Consequently, these PCR-based results are a valuable aid to clinicians in determining strategies for therapeutics that are metabolized by the Cytochrome P450 2C19.

I was favorably impressed by the fact that this CYP2C19 assay qualifies for reimbursement from Medicare and most insurers, according to the company’s website, which adds that there is an ongoing 6,000-patient clinical trial entitled Tailored Antiplatelet Initiation to Lessen Outcomes due to Clopidogrel Resistance after Percutaneous Coronary Interventions (TAILOR PCI).

The Spartan RX cheek swab POC results have been recently compared to centralized genotyping with a TaqMan® allelic discrimination assay (Life Technologies) using qPCR and with the GenID® reverse dot-blot hybridization assay (Autoimmun Diagnostika GmbH). Published results indicate excellent agreement, and led to the following conclusions by the authors: “Compared to both laboratory-based genotyping assays, the POC assay is accurate and reliable, provides rapid results, can process single samples, is portable and more operator-friendly, however the tests are more expensive.”

I look forward to finding out more about the Cube and the PCR results it can obtain. I’ll post more information on my blog as it becomes available. As usual, your comments are welcomed.


To me, there’s something visually intriguing about a cube, perhaps because it’s one of the so-called Platonic Solids, which have been known since antiquity and studied extensively by the ancient Greeks.

Taken from

Taken from

Platonic solids such as the cube have also fascinated chemists, as evidenced by there being a substantial amount of published literature on the synthesis and physical properties of platonic solids. For example, cubane (C8H8) is a synthetic hydrocarbon molecule that consists of eight carbon atoms arranged at the corners of a cube, with one hydrogen atom attached to each carbon atom. A solid crystalline substance, cubane was first synthesized in 1964 by Philip Eaton and Thomas Cole. Prior to this work, researchers believed that cubic carbon-based molecules would be too unstable to exist.

Taken from

Taken from

On the fun side, the cube was morphed—so to speak—into what became an amazingly popular game, or should I say, object of competition. Rubik’s Cube is a 3-D combination puzzle invented in 1974 by Hungarian sculptor and professor of architecture Ernő Rubik. If you’re wondering about the world’s record for solving this puzzle, it’s currently a mind-boggling 4.9 sec, according to a list (with video links) of this and past records that appear to have been broken regularly, just as I opined at the beginning of this blog. But I digress…yet again.

Virtual Reality for Graphene Nanopores and Space Station Sequencing 

  • Simulated Sequencing Takes Virtual Reality Way Beyond Games  
  • In Silico Simulations Suggest Possible 99.99% Accuracy for Graphene Nanopores 
  • minION Nanopore Sequencer is Sent to the International Space Station



Taken from

This blog is mostly about an international team of researchers who are using Virtual Reality (VR)—in the form of computational modeling—to simulate a new approach to DNA sequencing using nanopores made out of graphene. While VR is a hot trend in all sorts of so-called immersion media, such as those offered by Oculus (that was acquired by Facebook for $2 billion in 2014), computation-based VR has been used by scientists for simulating molecular interactions for a relatively long time. However, extending molecular simulations to complex (aka many-atom) systems like nanopores and DNA has had to wait for bigger, faster, cheaper computing.

In this blog, I’ll also discuss the recent launch of a commercially available nanopore sequencer for the first ever DNA sequencing in space using a self-landing rocket operated by Space X (co-founded by uber-famous multi-billionaire entrepreneur Elon Musk). It’s hard for me to even imagine what seemingly incongruent mix of topics could be more intriguing than these. As the now trendy saying goes, you can’t make this stuff up. But I digress…

Lift off! Taken from                     Self-landing! Taken from indianexpress .com

Lift off! Taken from    –  Self-landing! Taken from

Nanopore Sequencing 

baseFrom an earlier blog you’ll know that I’m a huge fan of tiny nanopores for sequencing, which is a 20+ year old concept, as depicted below from a seminal patent wherein DNA was envisaged as moving through a pore-in-lipid bilayer leading to base-dependent transient blockage of ionic current from which sequence is determined.

Taken from

Taken from

After two decades, this prophetic concept of nanopore sequencing has recently been realized, and commercialized by Oxford Nanopore Technologies (ONT) using “bionanopore” technology. Comparing the images above and below, you’ll see that bionanopores are, in many respects, quite similar to the first described nanopores, wherein a pore-forming protein, α-hemolysin (gray), is embedded in a lipid bilayer (blue). On the other hand, there is an attached DNA-processive enzyme, 29 DNA polymerase (brown), that feeds in the single strand of DNA for sequencing; details may be found elsewhere.

An alternative strategy for nanopore sequencing is to replace this type of bionanopore (composed of biological macromolecules) with a pore constructed of non-biological materials, notably silicon-based semiconductors that enable electrical signal generation and data processing. This would-be evolution of nanopore sequencing from biological constructs to various types of solid-state materials can be read about elsewhere.

Whither Goest Graphene?

It seems the next step in the progression of nanopore technology is those made of graphene—the trivial name for a very special form of carbon that was long known but exceedingly difficult to make. In fact, the process is so difficult that Andre Geim and Kostya Novoselov at The University of Manchester were awarded the 2010 Nobel Prize in Physics for their work enabling the production and characterization of graphene.

Geim and Novoselov. Taken from 

Geim and Novoselov. Taken from

Graphene is a two-dimensional array or “sheet” of carbon atoms that is usually depicted by the ball-and-stick model (pictured at the left below) as a one-atom-thick sheet of otherwise infinite dimensions. Since nothing is infinite in the real world, sheets of graphene have edges to which hydrogen is bonded, but for simplicity is ignored. This carbon-carbon bonding with carbon-hydrogen edges is akin to that in polycyclic aromatic hydrocarbons familiar to readers who are chemists.

Taken from  

Taken from

Taken from Bayley (2010) in

Taken from Bayley (2010) in

Because of graphene’s unique electrical properties and single-atom-thin structure, the basic idea is that a nanometer-size hole in graphene might be made—somehow—to allow DNA and ions to pass through and thus generate electrical signals—somehow—that are accurately deciphered—somehow—into DNA sequence. Oh, and let’s not forget that this sequence information must differentiate—somehow—3’->5’ from 5’->3’ directional pass through. All these “somehows” are meant to indicate that it’s far easier to imagine the concept of graphene nanopore sequencing, as fancifully shown below, than to actually do it.

Taken from Mechant et al. Nano Letters (2010)

Taken from Mechant et al. Nano Letters (2010)

The most daunting practical problem deals with how to “drill” tiny holes in graphene. One approach has been to use controlled electron-beam exposure in a transmission electron microscope. Initial demonstration of this approach was published in 2010 by Merchant et al. in Nano Letters in a paper titled DNA Translocation through Graphene Nanopores, from which the schematic left is taken.

In this device, a few-atoms-layer piece of graphene (1-5 nm thick) having an ~10 nm hole is suspended over a 1 μm diameter hole in a 40 nm thick silicon nitride (SiN) membrane suspended over an ~50 × 50 μm2 aperture in a silicon chip coated with a 5 μm silicon oxide (SiO2) layer in such a way that a bias voltage (VB) is applied between the reservoirs to drive DNA through the nanopore. Although DNA could be detected, the graphene pore size was too big to allow sequence detection.

Taken from Chang et al. Nano Letters (2010)

Taken from Chang et al. Nano Letters (2010)

Similar studies by Schneider et al. were also reported in Nano Letters in 2010, which appears to be a watershed year for this journal inasmuch as another noteworthy nano-detection scheme for DNA was described therein by Chang et al.—but with an important new feature. Namely, using gold electrodes (in yellow, below) separated by only 2 nm and conjugated to dC, a derivative of dG (blue balls) apparently was able to H-bond (magenta) to dC—based on dC-dG complementarity and detected as electron tunneling signals. This transient, base pair-specific H-bonding is what has now been further investigated by others albeit in the following form of Virtual Reality.

Virtual Reality Nanopore Sequencing

In contrast to the above “real” experiments, others have simulated reality using mathematical calculations based on theoretical chemistry, which is Virtual Reality that has physical significance well beyond simply playing games. Mathematical modeling or computation simulations are phrases generally used to describe these so-called in silico “experiments” that serve as indications of what could be done, in theory, if this Virtual Reality is actually translatable to the real world. But I digress…

An international team of investigators in the U.S., Germany, and Netherlands has recently reported studies titled Nucleobase-functionalized graphene nanoribbons for accurate high-speed DNA sequencing. Although this article is a dreaded “pay-to-read” article, there is a brief news piece about it at the website for the U.S. National Institute of Standards and Technology (NIST) where some of this work was conducted.

Taken from

Taken from

As is evident from the schematic shown below, these investigators borrowed from the aforementioned types of publications to imagine a graphene nanopore having its internal edges functionalized with nucleobase moieties that could potentially H-bond with DNA bases in a sequence specific manner—à la Chang et al. Under appropriate conditions, this could provide the basis for sequencing via measurement of induced current fluctuations.

More specifically, they imagined a sheet (aka ribbon) of graphene 4.5 x 5.5 nm with several nucleobase moieties attached to a 2.5 nm nanopore. In animated simulations (which are linked at the NIST website), you can watch how this sensing device would perform at room temperature in water with attached cytosine H-bonding to detect G in DNA.

When you watch this simulation, you’ll immediately notice how “wiggly” DNA is due to random motions of its constituent groups and atoms. You’ll also see detection of each translocating (i.e. passing G) as an increasing signal being recorded in real-time. While time as a parameter in this simulation is real, the simulation itself is not real, but rather virtual reality based on state-of-the art theoretical calculations by a computer.

With that caveat in mind, the performance was said to be 90% accurate (due to missed bases rather than wrongly detecting a base) at a rate of 66 million bases per seconds, which to me is mindboggling ultra-fast. Moreover, if this device could be fabricated as four sequentially-located graphene pores each functionalized with either C, G, A, or T, the researchers estimate that “proofreading” would increase accuracy to 99.99%, as required for sequencing the human genome.

Virtual reality is, well, not reality. And sometimes dreams and reality go in opposite directions. However, if indeed the above imaginary device and simulations were to become reality—nanopore sequencing would indeed be advanced dramatically from today’s performance.

ONT’s minION Sequencer in Space

In transitioning back to reality, it’s almost unbelievable to me that ONT’s minION nanopore sequencer—which I’ve blogged about before—was sent to the International Space Station (ISS) in April 2016 to carry out the first ever sequencing of DNA in space. If that wasn’t enough “buzz”, then the fact that this was achieved by uber-famous Elon Musk’s Space X company made it way more so, along with much ado in successfully landing the rocket’s first-stage on a relatively tiny platform in the ocean. This is all amazing stuff.  And to think that not so long ago, we were thinking how great it would be if self-landing rockets were really possible, not just a fun concept in video games and sci-fi movies!  Maybe virtual reality isn’t that far from becoming reality, but I digress….

The first aim of putting the minION nanopore into space is to demonstrate the feasibility of nanopore sequencing in microgravity. That being done would then allow use of the minION to rapidly sequence astronaut samples in the ISS to diagnose, for example, an infectious disease or other health issue.

Interested readers can peruse elsewhere much more about this historic milestone, as well as watch and listen to a short (but very exciting) video titled Space Station Live: Big DNA Science in a Small Package. The video was posted on Twitter on July 21st and features the minION device (aka The Biomolecular Sequencer).

NASA minION flight hardware for the ISS experiments packaged for shipment to the ISS. Credit: NASA/Sarah Castro. Taken from

NASA minION flight hardware for the ISS experiments packaged for shipment to the ISS. Credit: NASA/Sarah Castro. Taken from

I look forward to learning the results of the minIONs research in space. I hope that it’s “mission accomplished!” and of great use in years to come. BTW, if you’re a “space buff” like me, you can watch and listen to ISS-Mission Control live streaming 24-7 at this website.

As usual, your thoughts about this blog are welcomed as comments.

DIY CRISPR Kit – Door to Democratization or Disaster?

  • Gene Editing with CRISPR is All the “Buzz”
  • Low-Cost CRISPR Kit Being Sold to DIY “Biohackers”
  • What is the Balance Between Democratization and Preventing Disaster?

The dictionary definition of democratization is the transition to a more democratic political regime. Since democracy emphasizes the role of individuals in society, democratization is generally perceived to be good. This political concept of democratization is being increasingly morphed, if you will, to describe the transition of science and technology from trained specialists in traditional labs to any individual, anywhere—including someone’s kitchen table.

Taken from

Taken from

Lest you get the impression I’m an elitist, and not in favor of fostering better understanding—and appreciation—of science by non-scientists everywhere, I definitely am not. I want the value of science to be widely appreciated. Even if I weren’t of that opinion, democratization of science and technology is already evident in this exemplary cartoon indicating how DNA is now familiar to virtually everyone. But I digress…

Taken from


It is evident that molecular biology has also undergone democratization based on emergence of so-called “do it yourself” (DIY) advocates of biology (DIY-BIO), which on the surface seems like a good thing. But, as I’ll expand upon below, DIY-BIO has morphed in a way which has elevated concerns that a well-intentioned DIY aficionado anywhere can now access genetically powerful CRISPR reagents that might inadvertently unleash a harmful home-made organism.


First off, I should note that gene editing by CRISPR—thankfully short for “clustered regularly-interspaced short palindromic repeats”—actually involves another component named Cas9—short for CRISPR associated protein 9. Cas9 is an enzyme that recognizes single guide RNA (sgRNA) hybridized to one strand of specifically targeted DNA via the 5’end of sgRNA, as depicted in green in the mechanism below. The remaining sgRNA has a double-stranded “stem” (black, red) and loop (purple) internal structure, and a 3’ end with several stem-loop structures (red).

Taken from

Taken from

The scissors indicate Cas9 cutting both strands of DNA, which thus allows for insertion of so-called donor DNA and, consequently, enabling a variety of genetic manipulations in plants, bacteria, human or animal cells. Chemically synthesized sgRNA that target any gene of interest can be readily designed for purchase, along with Cas9 in the form of biosynthetic Cas9 mRNA encoding this necessary protein component.

CRISPR’s importance as an emerging, useful tool for gene editing is evident from the number of publications in PubMed that have approximately doubled each year since the seminal to give an estimated 2,500 publications indexed to CRISPR as a search term. Unfortunately (but perhaps not surprisingly given the billion-dollar implications), there is an ongoing dispute over inventorship involving the Broad Institute (see Feng Zhang patent), the University of California, and the University of Vienna.

Biohacker Promotes DIY CRISPR Kit

Josiah Zayner (Taken from

Josiah Zayner (Taken from

As mentioned in the introduction, self-proclaimed “biohackers” who are avid fans and practitioners of DIY molecular biology, have been busily “doing their thing” for some time now without much cautionary publicity. That’s changing, however, as a result of the advent of CRISPR together with relatively easy access to its sgRNA and Cas9 reagents. One case in point involves Josiah Zayner, who has a PhD from the Department of Biochemistry and Molecular Biophysics at the University of Chicago and now lives in the San Francisco Bay Area.

Zayner’s online biographical sketch states that he is “very active in Biohacking and DIY Science and run[s] an online Biohacking supply store The ODIN.” By visiting the website for The ODIN, which reportedly raised $65,000 by crowdfunding online via Indiegogo, you’ll find various items for conducting molecular biology experiments, along with an “about” page stating that “smaller groups of people, small labs or even DIY Scientists on their own can do amazing things if they have access to resources that are normally only available to large heavily funded labs and companies.”

While this seems all fine and good is some ways, the item offered by The ODIN that has led to controversy is the first-ever DIY kit for CRISPR. This, according to an article in The Mercury News, “raises the specter—deeply troubling to some experts—of a day when dangerous gene editing is conducted far from the eyes of government regulators, posing risk to the environment or human health”.

The article goes on to quote one expert who said The ODIN kit is sold for manipulating yeast and could never be used to alter human genes, while another expert cautioned that the kit can teach basic principles to do so with appropriate modifications. Another problem is inadvertent conversion of yeast into a harmful microorganism that might be accidentally spread.

Taken from

Taken from

While I share these concerns, it will be virtually impossible to prevent individuals or small groups intent on nefarious activities using CRISPR technology. On the other hand, I have to admit that I would be very concerned if I were living next door or otherwise nearby Josiah if he is indeed practicing what he’s preaching, so to speak, using CRISPR in his kitchen as pictured right.

CRISPRized Plants, Too

If you think that DIY is a passing fad with few devotees, think again. Aside from the main DIY-BIO website that you can peruse, a recent online article in Fusion talks about a couple of DIY enthusiasts doing things that make the hairs on my neck stand up, as the saying goes. For instance, David Ishee, a 30-year-old Mississippi resident who never attended college, does at-home experiments in his shed using online kits for growing plants, but will now use CRISPR to carry out gene editing.

Ishee reportedly will use software like DeskGen that advertises its “on-demand CRISPR libraries” for gene editing, and is quoted as saying “That gives me a lot of new options. Up until now, all the genetic edits I’ve made have been limited to plasmids and unguided genomic insertions. That limits the kinds of cells I can work with and the types of work I can do.”

So what will Ishee do? The answer is that nobody but he knows. If his genetically edited plants grow and seeds get carried by the wind, they could someday end up in your backyard. What then? Who knows? Could be creepy.

Possibly harmful, irreversible consequences of completely democratized CRISPR are completely unknown. Therein lies the essence of the problem that has many experts quite concerned, as reported in Fusion. I share that concern.

Parting Shot

In closing this brief story about DIY synthetic biology using CRISPR, I must say that I wish journalists writing for newspapers and other media would stick to news that is factual and not interpreted for commentary that is flat out wrong or intentionally provocative. My case in point is the following big font, bold letters headline:

“Finally, your chance to play God!”

This was used by to recycle the aforementioned piece by The Mercury News. Shame on for this misleading and totally wrong exclamation. But I digress…

I would greatly appreciate knowing your thoughts about DIY CRISPR by sharing them here as comments.

Zon on Zon’s Zebrafish

  • Leonard Zon Uses Zebrafish to “Fish” for Candidate Drug Compounds
  • Two Candidate Drugs are in Clinical Trials for Cancer Treatments
  • Zon Interviews L. Zon
Leonard I. Zon, M.D. Taken from

Leonard I. Zon, M.D. Taken from

The first time I was asked if I was related to the scientist Leonard Zon, I honestly had to reply that I didn’t know, and out of curiosity later looked up his publications, which were quite numerous for a then newish investigator. His current biosketch expertise includes pioneering research in the new fields of stem cell biology and cancer genetics. Dr. Leonard I. Zon is the Grousbeck Professor of Pediatric Medicine at Harvard Medical School, an Investigator with the Howard Hughes Medical Institute, and Director of the Stem Cell Program at Children’s Hospital Boston—that’s impressive!

I found Leonard Zon’s unusual zebrafish-based research and accomplishments therefrom definitely blogworthy, and the coincidences of both our surnames and involvement in science are kind of an unusual “double-doppelgänger,” if you will. In any case, it’s always a surprise to meet your double, even if only in name and profession.

A few regular readers of my blog will likely smile and think that Zon on Zon’s Zebrafish is yet another instance of my penchant for alliteration. However, reading the following snippets about Leonard Zon’s clever—dare I say zany—use of zebrafish for his research will illustrate why they are unusual, interesting and commercially viable.

On the other hand, I must admit that I too smiled at the thought of this unique opportunity to post an interview of one Zon by another Zon, which reminded me a bit of Zappa Plays Zappa. But I digress…

Zebrafish as a Model for Organogenesis

Leonard Zon currently has nearly 250 research publications listed in PubMed, which is a large number by any measure, but that’s even more impressive when you take into account that his first was in 2002—only 14 years ago. That translates to an average of about 3 publications every 2 months each year!

Zon’s inaugural publication in 2002 was an in-depth review in venerable Science in which the abstract presciently reads in part as follows:

Organs are specialized tissues used for enhanced physiology and environmental adaptation. The cells of the embryo are genetically programmed to establish organ form and function through conserved developmental modules. The zebrafish is a powerful model system that is poised to contribute to our basic understanding of vertebrate organogenesis. This review develops the theme of modules and illustrates how zebrafish have been particularly useful for understanding heart and blood formation.

As will be elaborated below, Zon’s most recent publication in 2016—also in Science—has extended the zebrafish model to now include melanoma. If you’re asking yourself, why use zebrafish, the answer is partly due to convenience derived from the unique features and accelerated life cycle of zebrafish.

Zebrafish life cycle. Taken from

Zebrafish life cycle. Taken from

Seen right, these advantages include its small size, easy care, and rapid generation time. In addition—and very importantly—the embryos and growing zebrafish are transparent, allowing for continuous observation of developing organs under the light microscope.

Mutagenesis screens allow examination of defects in early organogenesis and late organ function. These many advantages of investigating zebrafish—and Zon’s huge facility comprising thousands of tanks—are nicely explained and shown in a video, which I found well worth viewing. The video also includes Zon’s specially bred, virtually transparent species of zebrafish named—humorously—Casper, after Casper the Friendly Ghost. Pictures below are (a) the transparent Casper zebrafish; (b) the non-transparent wild-type zebrafish; and transparent Casper the Friendly Ghost, which brings back my childhood memories. But again I digress…let’s get back to science!

(a) Casper, (b) wild type zebrafish. Taken from Transparent Casper the Friendly Ghost. Taken from

(a) Casper, (b) wild type zebrafish. Taken from Transparent Casper the Friendly Ghost. Taken from

Aided by the availability of DNA sequence information for the zebrafish genome, researchers have published ~2,000 (!) reports dealing with antisense gene “knockdown” using phosphorodiamidate oligonucleotides. By numerical coincidence, the first such report appeared in 2000, and was prophetically entitled Effective targeted gene ‘knockdown’ in zebrafish.

Taken from

Taken from

As shown below, these rather unusual oligonucleotides—dubbed “morpholinos” by resemblance of the 6-membered ring to morpholine—can be injected directly into zebrafish embryos. Interested readers can consult a detailed “how to” guide on use of morpholinos in zebrafish.

Going forward, however, I expect that uber-hot CRSPR/Cas9 gene editing will be widely adopted, based on the titles of these two pioneering publications in 2016:

Stem Cells and Beyond

Now that we know a bit about Zon’s zebrafish and how to knockdown or edit a gene for functional genomics (aka “gene functionation”), let’s zero in on what Zon studies and how he does that. In a nutshell, the overarching science in Zon’s lab deals with stem cells, which are undifferentiated cells that can differentiate into specialized cells, as well as divide to produce more stem cells, as depicted below.

Taken from

Taken from

According to Zon’s website, the hematopoietic system that forms various types of blood cells is an excellent model for understanding tissue stem cells. This conceptual relationship is very important because it provides insight to cell differentiation regulation, and involvement in aging, disease, and oncogenesis. In addition, better understandings of the regulation of hematopoietic stem cell biology and lineage differentiation improves diagnosis and treatment of human hematopoietic disorders (aka “blood cancers”) and bone marrow transplantation therapies.

Differentiation of different blood cells from hematopoietic stem cell to mature cells. Taken from

Differentiation of different blood cells from hematopoietic stem cell to mature cells. Taken from

From Zebrafish to Clinic

Scientific theory is nice, but success is best, and Leonard Zon’s theory of using zebrafish to manipulate human stem cells for discovering therapies seems indeed to be headed for success, according to an article in the Harvard Gazette.

Zon and others at the Harvard Stem Cell Institute (HSCI) have published initial results of a Phase Ib safety study wherein 12 adult patients undergoing umbilical cord blood transplantation received two umbilical cord blood units, one untreated and the other treated with the small molecule 16,16-dimethyl prostaglandin E2 (dmPGE2). This molecule had been found in Zon’s zebrafish screen, which I’ll outline below.

Fate Therapeutics, a San Diego-based biopharmaceutical company of which Zon is a co-founder, sponsored the investigational new drug (IND) application, under which the aforementioned clinical program was conducted, thus translating his research findings from the laboratory—dare I say tank—into the clinic.

Zon’s Zebrafish Yield New Approaches to Treat Muscular Dystrophies

According to NIH’s National Institute of Neurological Disorders and Stroke website, muscular dystrophies (MD) are a group of more than 30 genetic diseases characterized by progressive weakness and degeneration of the skeletal muscles that control movement. It adds that there is no specific treatment to stop or reverse any form of MD. Consequently, MD is a compelling target for new drug discovery, and Zon’s zebrafish are being used for such discovery in the following way.

Each zebrafish produces about 200 (!) eggs per week, so Zon’s lab collects and deposits a single egg into each well of a multi-well plate for individual but parallelized treatment with individual chemicals to screen for effects on differentiation, thus screening many compounds in a speedy manner.

Zon and coworkers concluded that “these studies reveal functionally conserved pathways regulating myogenesis across species [zebrafish, mouse, and human] and identify chemical compounds that…differentiate human iPSCs into engraftable muscle.”

Let’s hope that human clinical trials using this novel therapeutic approach enabled by Zon’s zebrafish soon prove successful for treatment of MD.

Zon’s Zebrafish Also Enable Elucidation of Melanoma Development

According to a fact page by the American Cancer Society, skin cancer is the most common of all cancers. About 3.5 million cases of basal and squamous cell skin cancer are diagnosed in this country each year. Melanoma, a more dangerous type of skin cancer, will account for more than 73,000 cases of skin cancer in 2015.

Zon and a large group of 18 coworkers have recently reported in venerable Science work that has been heralded in a New York Times article. This study is very comprehensive and involves lots of “heavy duty” molecular and cellular biology, which you can read in detail in the aforementioned linked article. Snippets of the key findings are as follows.

  • Benign melanocytic skin cells carry oncogenic BRAF-V600E mutations and can be considered a “cancerized” field of melanocytes, but they rarely convert to melanoma.
  • In an effort to define events that initiate cancer, they used a melanoma model in the zebrafish in which the human BRAF-V600E oncogene is driven by the melanocyte-specific mitfa
  • When bred into a p53 mutant background, these fish develop melanoma tumors over the course of many months.
  • The zebrafish crestin gene is expressed embryonically in neural crest progenitors (NCPs) and is specifically reexpressed only in melanoma tumors, making it an ideal candidate for tracking melanoma from initiation onward.
  • As show below, they developed a crestin:EGFP reporter that recapitulates the embryonic neural crest expression pattern of crestin and its expression in melanoma tumors.
  • They show through live imaging of transgenic zebrafish crestin reporters that within a cancerized field (BRAFV600E-mutant; p53-deficient), a single melanocyte reactivates the NCP state, and this establishes that a fate change occurs at melanoma initiation in this model.
Taken from Zon and coworkers Science 2016.

Taken from Zon and coworkers Science 2016.

Zon Interviews L. Zon

Dr. Zon and some of his 4,000 zebrafish tanks. Taken from

Dr. Zon and some of his 4,000 zebrafish tanks. Taken from

After researching Leonard Zon’s aforementioned unique—and promising—use of zebrafish to advance basic science and discover new therapies, I contacted him by email to “interview” him, regarding several points. My questions (JZ) and his answers (LZ) are as follows.

JZ: Aside from the cord blood clinical trial mentioned in the Harvard Gazette, are any other human clinical trials being carried out based on your zebrafish findings?

LZ: We have had two chemicals discovered in zebrafish, and ultimately went to a clinical trial. The first was a di-methyl form of PGE2 for cord blood transplantation for leukemia. The second was leflunomide, an arthritis drug that paused transcription in neural crest cells and is being evaluated for metastatic melanoma.

JZ: Is Fate Therapeutics your only startup company?

LZ: I started Scholar Rock about 3 years ago. This company is targeting the TGF-B family of ligands. Has about 25 employees, and is in Cambridge. I am about to start a third company.

JZ: Is your zebrafish method for screening chemicals patented?

LZ: We have patents on several screening methods, but in general we patent the chemicals we find.

JZ: Zebrafish offer many reported advantages for your kind of research, but what is a primary disadvantage?

LZ: The major disadvantage of the zebrafish is that the system occasionally lacks definition. For instance, in the blood system, we have one monoclonal antibody against one epitope. We really need to create reagents for the field that brings it in line with other systems such as mice and humans.

JZ: How many tanks and zebrafish are maintained in your two labs?

LZ: We have 4000 tanks and about 300,000 fish.

JZ: Did you name your transparent Casper zebrafish after Casper the Friendly Ghost?

LZ: Absolutely.

In closing, I should add that the huge amount of information on zebrafish as a model organism for human disease and drug discovery from many labs has been centralized and organized in a database that is available through The Zebrafish Information Network (ZFIN) for researchers to share at the ZFIN Community Wiki.

I hope that you found this blog interesting, and I welcome your comments.

Joe Zon with some of his famous guitars at NAMM Show 2015. Taken from

Joe Zon with some of his famous guitars at NAMM Show 2015. Taken from


Truth be told, compared to being asked if I’m related to Leonard Zon, I’m more frequently asked if I’m related to Zon guitars, which apparently are quite well known, and are produced in Redwood City, CA by Joe Zon, who is pictured below. My reply to that frequent question is that I don’t know if I’m related, but will someday look into that, as well as whether I’m distantly related to Leonard Zon.

Death of DNA Dogma?

  • Current Genetic Dogma is DNA → RNA → Protein
  • Two Research Teams Independently Implicate Sperm Short RNA Can Transmit Paternal Genetics
  • More Research Needed to Elaborate the New Dogma

The Central Dogma of all life on Earth is currently understood to be DNA encoding RNA that in turn encodes protein. That genetic inheritance is transferred as DNA was first posited by uber-famous Francis Crick, who coined the term Central Dogma. While dogmatic principles, by definition, should have no exceptions, a few species of viruses can be considered to be exceptional cases in this regard.

The Central Dogma. Taken from

The Central Dogma. Taken from

That said, there is now quite a scientific buzz—if not shudder by some—over reports implicating RNA molecules as direct (i.e. non-DNA) agents for mammalian inheritance. My instantaneous mental responses to these surprising—if not shocking—revelations was first, “Wow, who would have thunk?” and then, “I’ve got to share this news in a blog.” So here it is.

Surprising Science in Sperm

Human sperm. Taken from

Human sperm. Taken from

While most of us are probably at least passingly familiar with textbook descriptions of the basic structure of sperm and its functional role in reproductive molecular biology, more detailed information on its nucleic acid content is less known. Consequently, shown below is a depiction of the basic structural components of a sperm, DNA content, and primary functions for doing its job, so to speak, in fertilization of an egg.

By way of background, here’s information that I thought was worth sharing. My Google Scholar search results for nucleic acid content of sperm included a very impressive technological accomplishment reported by uber-famous professor/entrepreneur Stephen Quake and co-workers in 2012 on microfluidic separation methods for the first ever genome-wide single-cell DNA sequencing of human sperm. Contrary to what one might intuitively expect, 91 genomes of sperm from a single individual were not identical. Since DNA from only one sperm and one egg combine during fertilization, the exact paternal DNA genotypes in the resultant offspring involves “pot luck,” so to speak.

Regarding RNA, my Google Scholar search led to a paper in 2011 by Krawetz et al. on the first ever report of deep-sequencing of short (18-30 bases) RNA (sRNA) in human sperm (for which TriLink offers a high-performance CleanTag™ kit for sRNA library prep as detailed on this poster). Krawetz et al. found microRNA (miRNA) (≈7%), piwi-interacting RNA (piRNA) (≈17%), and repeat-associated sRNA (≈65%). A minor subset of sRNA within the transcription start site/promoter fraction (≈11%) frames the histone promoter-associated regions enriched in genes of early embryonic development. However, reproductive roles for this molecular menagerie (what I tongue-in-cheek call these various sRNAs) remain speculative.

Fast forwarding to present time leads us to the two “wow” publications in venerable Science that triggered this blog:

While you’ll need to read these publications for details, they collectively raise the following controversial question vis-à-vis the Central Dogma for strictly DNA-based inheritance.

Are You Inheriting More Than Genes from Your Father?

Yes, is the surprising—if not bombshell—answer to this question, which I borrowed from Mitch Leslie’s Science editorial headline. If this conclusion is supported by further studies, it forces a fundamental revision of reproductive molecular cell biology. That’s a very big deal, so to speak, with ramifications not to be under appreciated.

Using sRNA library preparation methods analogous to TriLink CleanTag™ for Illumina deep-sequencing, the USA-Canadian team analyzed sperm from male mice fed a low-protein diet, progeny of which showed elevated activity of genes involved in cholesterol and lipid metabolism. They found that >80% of sRNA were fragments from several kinds of transfer RNAs (tRNAs). Most notably, 5′ fragments of tRNA-Gly-CCC, -TCC, and -GCC shown below all exhibited an approximately 2- to 3-fold increase in low-protein sperm.

Arrows indicate ~30- to 34-nt 5′ tRFs. Taken Upasna Sharma et al. Science (2016)

Arrows indicate ~30- to 34-nt 5′ tRFs. Taken Upasna Sharma et al. Science (2016)

To understand when, where, and how these tRNA fragments were formed, as well as unravel functional significance, the researchers describe an experimental tour de force—in my opinion. This included antisense modified-oligonucleotide “knock-out” of these tRNA fragments, as well as “knock-in” injection of <40-nt sRNA populations purified from control and low-protein sperm into control zygotes.

The researchers concluded that the sperm acquired most of these fragments while passing through the epididymis, a duct from the testicle where the cells mature. Functionally, they also link tRNA fragments to regulation of endogenous retro-elements active in the preimplantation embryo.

In the second study, the China-USA team also found tRNA fragments by deep-sequencing of sRNA. After feeding male mice either a high-fat or low-fat diet, the scientists injected the animals’ sperm into unfertilized eggs, and then measured metabolic performance of the offspring, which ate a normal diet. Progeny of fat-eating fathers remained lean; however, they showed two abnormalities often found in their dads and in humans who are obese or diabetic—abnormal absorption of glucose and insensitivity to insulin.

Like the first study, these researchers also did “knock-in” experiments wherein they inserted the tRNA fragments into eggs fertilized with other sperm. Fragments that came from fathers that ate the high-fat diet resulted in offspring that also showed impaired glucose absorption.

Take Home Messages

At the risk of over simplifying or over generalizing, the aforementioned two studies of sRNA in sperm provide compelling—and stunning—evidence for how tRNA fragments in sperm are responsible for inheritance independent of sperm DNA sequences. So much for dogma.

With regard to specifics, researchers now need to investigate how permanent these changes are, and how quickly they can be reversed by changing diet.

The flip-side of a bad diet adversely influencing offspring is to investigate if and how a good diet imparts better health to offspring.

Please share your thoughts about these reports, conclusion, and implications by commenting here.


If you enjoy hip hop music—or just want to chuckle—this YouTube video for the Central Dogma song will get your head bobbing in sync with the music, lead you to smile, and give you a cool visual display of the central dogma.

Nucleic Acid-Based Circulating Biomarkers for Cancer Diagnostics Become Reality

  • Circulating Tumor Cell Blood Tests Approved by FDA
  • Circulating DNA Stool Test Approved for Colorectal Screening to Avoid Colonoscopy
  • Circulating mRNA Urine Test Approved for use to Reduce the Total Number of Unnecessary Prostate Biopsies


Taken from 

Taken from

According to the NIH National Cancer Institute website, ~1.6 million persons in the U.S. alone will be diagnosed with cancer this year. A very important key to survival is early detection. To enable significantly earlier diagnosis compared to manifestation of clinical symptoms, researchers have been focusing on finding DNA or RNA biomarkers that are circulating in blood, which is readily available and relatively noninvasive compared to traditional biopsies.

exosomesSome of the basic processes underlying this paradigm-shift in cancer diagnostics are depicted in the simplified cartoon wherein tumor cells, or components thereof, pass into the bloodstream. This leads to circulating tumor cells (CTCs) and cell-free circulating tumor DNA (ctDNA) to investigate and differentiate from their normal counterparts as sources of potential biomarkers.

That task is much easier said than done because of the need to sort through all of the normal components in blood, as well as deal with circulating cells and DNA derived from apoptosis (aka programed cell death) and necrosis that are normal ongoing “background” to contend with. In addition to CTCs and ctDNA, there is active cellular excretion of small (30-100 nm) exosome particles as depicted in the following graphic. Consequently, gene-encoding mRNAs, gene-regulating micro RNAs (miRNA), and potentially other exosomal components, can serve as diagnostic biomarkers.

Snapshots of Recent Commercial Diagnostic Products

My search of PubMed for publications indexed to “circulating biomarkers” AND “cancer” led to ~9,000 items, the vast majority of which have appeared during the past decade at an accelerating annual rate.  In fact, there were ~1,000 publications in 2014 alone—that’s roughly 3 such publications every day! Those interested in perusing this mountain of information later can use this link, as my intention here is to comment on resultant commercial diagnostic products, each of which provides all-important early diagnosis using a simple blood test, or urine or stool.


In one of my blogs last year, I asserted that liquid biopsies were (metaphorically) clinically valuable “liquid gold” in a modern day Gold Rush. My evidence for the “rush” was a then recent review in Clinical Chemistry stating that “the detection and molecular characterization of CTCs are one of the most active areas of translational cancer research, with >400 clinical studies having included CTCs as a biomarker.” In that vein—double pun intended—who’s struck it rich, so to speak, commercially?

Taken from

Taken from

The answer is Veridex, which developed the CELLSEARCH® CTC Test that has the added distinction of being the first FDA-approved in vitro diagnostic (IVD) test for capturing and counting CTCs to determine the prognosis of patients (in this case for metastatic breast, colorectal or prostate cancer). This test utilizes magnetic capture of cancer-specific antibodies as depicted below.  Veridex was subsequently acquired by Jansen Diagnostics, which now offers a complete system for CELLSEARCH® CTC Test comprising sample collection, sample preparation, and sample analysis using unique immuno-magnetic and fluorescence imaging technology.

In addition, a Swiss molecular diagnostics company, Novigenix, offers its blood tests for early detection of cancer. Colox®, its lead product, is designed to significantly reduce mortality from colorectal cancer through early detection and follow-up colonoscopy. Novigenix’s technology is based on predictive gene expression profiles of circulating blood cells and tumor-derived protein markers.

Taken from Soper and coworkers in Chem. Commun. (2015).

Taken from Soper and coworkers in Chem. Commun. (2015).

Although not yet a diagnostic device, Prof. Steven Soper at UNC-Chapel Hill and a team of coworkers have recently published methods whereby captured CTCs can be enzymatically released for further analysis. This release procedure (depicted right) features use of an oligonucleotide linker containing uracil (U) that is cleaved by USER™, which consists of a mixture of uracil DNA glycosylase and DNA glycosylase-lyase endonuclease VIII.

ctDNA Biomarkers for Colon Cancer Screening

That ctDNA can provide promising biomarkers for noninvasive assessment of cancer has been successfully translated into a commercial product by Trovagene, which tests for ctDNA in urine or blood, and claims to have been the first company to have recognized the diagnostic value of ctDNA.

In addition, Cologuard® (developed by Exact Sciences in Madison, WI) was approved by the FDA as the first stool-based colorectal screening test that detects red blood cells and DNA mutations that may indicate colon cancer or precursors to cancer. Its commercials are frequently seen on TV. Given the inconvenient colon-cleansing required of patients prior to the also unpleasant invasiveness of colonoscopy, it’s not surprising that more and more persons are opting to use this new test.

In fact, Exact Sciences recently reported that during the first quarter of 2016, the company completed approximately 40,000 Cologuard® tests, an increase of more than 260% compared to approximately 11,000 tests completed in the same quarter of 2015. The cumulative number of physicians ordering Cologuard® since launch expanded to more than 32,000. Finding a doctor is relatively easy, as I found out when I located a gastrointestinal (GI) specialist near me who was also in my network—yeh!

Given the high incidence rate of colon cancer, and the traditionally recommended screening process, it was necessary for Exact Sciences to obtain compelling data in a large clinical study. An FDA announcement stated that the safety and effectiveness of Cologuard® was established in a clinical trial that screened 10,023 subjects. The trial compared the performance of Cologuard® to the fecal immunochemical test (FIT), a commonly used non-invasive screening test that detects blood in the stool. Cologuard® accurately detected cancers and advanced adenomas more often than the FIT test.

Other ctDNA Biomarkers

PlasmaSelect-R™ offered by Personal Genomics Diagnostics, which is a service company founded by experts at Johns Hopkins University, analyzes ctDNA in blood for genetic alterations in cancer based on a targeted panel of 63 well-characterized cancer genes. Cell-free DNA is extracted from plasma using proprietary methods for low-abundance sample DNA, and processed using a proprietary capture process for high-coverage next-generation sequencing to allow tumor specific mutations, amplifications, and translocations to be identified with a high sensitivity (allele fractions as low as 0.10%) and specificity. The company states that its “services further the understanding of cancer and facilitate the development of new diagnostics and therapeutics through our pioneering research approaches and novel technologies.” 

In June 2016, Roche announced that the FDA approved the cobas® EGFR Mutation Test v2 for use with plasma samples, as a companion diagnostic for the non-small cell lung cancer (NSCLC) therapy, Tarceva®. It’s important to recognize that this is the first FDA approval of a liquid biopsy test as an aid in clinical decisions, and makes it the only companion diagnostic that is FDA-approved for the detection of the epidermal growth factor receptor (EGFR) gene in tumor DNA derived from plasma (or tumor tissue). NSCLC patients who have EGFR exon 19 deletions or L858R mutations are candidates for the EGFR-targeted therapy Tarceva® (erlotinib) in first-line treatment.

Circulating RNA and miRNA

The discoveries in 1999-2000 of tumor-derived RNA in the blood of cancer patients sparked a new field for studying gene expression noninvasively using quantitative reverse transcription-PCR (qRT-PCR) and then next-generation sequencing. The existence of circulating RNA was surprising because ribonucleases are present in blood. However, mechanisms that protect circulating RNA reportedly include complexation to lipids, proteins, lipoproteins, or nucleosomes, and protection within apoptotic bodies or other vesicular structures.

Cleverly named Molecular Stethoscope is a newish startup co-founded by uber-famous Drs. Stephen Quake and Eric Topol. The company has leveraged Quake’s finding that genome-wide analysis of circulating RNA shows tissue-specific signatures from all of the major organs can be monitored in blood, and Topol’s finding that such signatures can be used to predict imminent occurrence of a heart attack. Coronary artery disease, neurodegenerative diseases, and autoimmune/inflammatory diseases are the company’s current objectives. I’m guessing, however, that cancer might be added or licensed.

My search of the literature indicates that there are far more publications on circulating miRNA, presumably due to its greater abundance resulting from its small size and/or binding to miRNA-related proteins. The biogenesis of miRNA is depicted below.

Taken from

Taken from

A review and prospectus for circulating miRNA applied to cancer has been recently published by Bertoli et al. in an article entitled MicroRNAs: New Biomarkers for Diagnosis, Prognosis, Therapy Prediction and Therapeutic Tools for Breast Cancer. From my search of this emerging field, some exemplary commercial endeavors are as follows.

The first blood-based cancer diagnostic to exploit exosomes became commercially available in the U.S. in January 2016 via launch of ExoDx Prostate(IntelliScore) by Cambridge, MA-based Exosome Diagnostics. As reported by a large team of medical experts in JAMA Oncology, qRT-PCR was used to compare the urine exosome 3-gene expression with biopsy outcomes in patients with a range of low-to-high prostate-specific antigen (PSA) levels (2 to20 ng/mL).

Taken from

Taken from

The investigators concluded that this qRT-PCR assay using urine was associated with improved identification of patients with higher-grade prostate cancer among men with elevated PSA levels and could reduce the total number of unnecessary biopsies from the ~1M total annual biopsies. The complications that have been associated with unnecessary biopsy and overtreatment range from erectile dysfunction and incontinence, to infections, sepsis and serious cardiovascular events.

At the other end of the commercial spectrum, so to speak, startup Miroculus aims to aid in the early diagnosis of cancer by making a low-cost, open-source, decentralized diagnostic they called Miriam pictured below. Their goal is for untrained workers in clinics around the world to be able to use Miriam to screen for cancer.

Taken from

Taken from

Miriam made its—or more gender specific—her public debut at the TEDGlobal conference in Rio De Janeiro in 2014 with TED curator Chris Anderson calling it ‘one of the most thrilling demos in TED history’, according to Miroculus. To see and hear why this opinion is accurate, and how Miriam will work in concert with a smartphone camera and cloud interface, I urge you to check out the ~11 minute TEDGlobal presentation at this link, which also gives a short, layperson introduction to miRNA biomarkers in blood for cancer.

Oh, One More Thing

Taken from

Taken from

Although this post focuses on nucleic acids, it’s worth noting that protein biomarkers in blood are also being investigated. In view of increased awareness and media attention about concussion injuries in the National Football League (NFL), a timely example of protein biomarkers for diagnosis of chronic traumatic encephalopathy (CTE)—which heretofore has not been possible by any test—is in development.

Currently the only way to diagnose CTE is through a post-mortem autopsy, but Aethlon Medical Inc. intends to change that with the diagnostic test being developed by its subsidiary Exosome Sciences. The test being studied is designed to identify an abnormal protein called tau that builds up in brain tissue as a result of repetitive head trauma. CTE researchers believe that they have developed a means of measuring plasma exosomal tau. Researchers thought that exosomes had potential as a means of identifying CTE because they cross the blood-brain barrier and can provide a unique method of measuring certain aspects of the contents of brain cells through a blood test.

Exosome Science was able to use its diagnostic blood test in 78 NFL players with histories of concussions, as well as in a control group made up of 16 athletes involved in non-contact sports. The subjects are all part of a much larger NIH-funded project called DETECT, which is focused on developing a variety of biomarkers for CTE and involves researchers at Boston University School of Medicine and the University of Washington.

Look for a future post here about DETECT involving nucleic acid biomarkers.

As always, your comments are welcomed.

Dietary Intake of Plant miRNA in Humans is Exciting but Controversial

  • Chinese Team Claims Dietary Rice miRNA can Regulate Gene Expression in Humans
  • Collaboration by miRagen Therapeutics and Monsanto Reports Inability to Detect Bioavailability of Dietary Rice miRNA
  • City of Hope Investigators Claim First Evidence for Plant miRNA having Anticancer Activity



Taken from

You’re probably familiar with the adage “you are what you eat,” the origins of which I found attributable to 17th century Europeans. As scientists, we can intuitively understand this concept by thinking about our dietary food as biochemical inputs, and our body content as biochemical outputs. Further intuition suggests that this input/output cuts both ways, so to speak, as stated here by noted healthy food advocate, Ann Wigmore.

Continue reading