Lab-on-a-Drone and Other Innovative Point-of-Care Devices

  • Lab-in-a-Box…Think Bento
  • Lab-on-a-Robot…Rolls Along 
  • Lab-on-a-Drone…PCR-on-the-Fly

Honey! I shrunk the lab! 

Taken from

Researchers have long dreamed of a “lab-on-chip” (LOC) wherein common laboratory procedures have been miniaturized and integrated in various formats using microfluidics—small, interconnected channels resembling electronic circuits on a chip—that provide low-cost assays for “point-of-care” (POC) applications. The cartoon to the right humorously but concisely depicts the general concept of LOC, for which there are virtually an infinite number of specific embodiments made possible by continuing development of many clever fabrication and microfluidic technologies for “shrinking” lab procedures.

Importantly, lab personnel are thus freed-up from slavish, repetitive tasks to instead carry out discovery and development work. Testament to the significance of LOC is evident from the astounding—to me—130,000 items I found in Google Scholar by searching LOC as an exact-word phrase. There is also a LOC Wikipedia site and a journal for LOC specialists named—appropriately—Lab on a Chip, which is already in its 15th year.

What follows is my take on some of the conceptual morphing, so to speak, of LOC-enabled devices that can be packed for portability, driven by remote control, or flown-“in-and-out” for all manner of unconventional, but critically important POC situations needing nucleic acid-based tests.


In archived blogs I’ve previously commented on examples of commercially available portable POC devices that are variations of a lab-in-a-box that can be easily carried in luggage or a back pack. By way of updates, here are some new applications for these systems illustrating wide diversity of use and location:

  • Ubiquitome’s hand-held qPCR system for molecular testing in New Zealand forests aimed at protecting indigenous Kauri trees—the oldest tree species in the world.
  • Amplyus’ miniPCR system for combating Ebola in villages deep in Sierra Leone, Africa.
  • Oxford Nanopore’s thumb-drive size DNA sequencer to identify organisms in the Canadian high Arctic.

Taken from @WhyteLab

RAZOR system by BioFire Defense. Taken from

In the above examples, sample prep workflow is still in need of automation with appropriate LOC technology. However, progress in this regard is being made. One example is the RAZOR system developed by BioFire Defense (pictured below) that features a qPCR lab-in-a-box with ready-to-use, freeze-dried reagent pouches for the detection and identification of pathogens and bio-threat agents. While the progress is impressive, there is still work to be done. A dramatized video for RAZOR usage revealed that much manual manipulation and dexterity with syringes are still required, which suggests the need for complete LOC automation in the future.

Another example of facilitating POC sample prep is the Bento Lab, which is named to be word-play on Bento Box—a complete Japanese lunch in a small, partitioned box-like plate. This portable DNA laboratory created by Bethan Wolfenden and Philipp Boeing at University College London is small enough to fit into a laptop bag, weighs only 6.6 pounds, and can now be preordered for ~$1,000 as a “must have” accessory for so-called “citizen scientists,” some of whom have had early access and have posted their personal Bento Lab stories.

The Bento Lab. Taken from Bento Lab


Biohazard accidents happen, as do bio-threat acts of terrorism. In these seriously scary situations, it may be safer or necessary for first-responders to deploy an Autonomous Vehicle as a self-navigating/driving lab-on-a-robot. Sounds far out, but the first example of a mobile lab-on-a-robot was demonstrated in 2008 by Berg et al., and is pictured below.

Taken from Berg et al. (2008)

This particular lab-on-a-robot is able to autonomously navigate by GPS, acquire an air sample, perform multi-step analysis [i.e. injection, capillary electrophoretic separation, and electrochemical (EC) detection], and send data (electropherogram) to a remote station without exposing an analyst to the testing environment. It’s easy to imagine adapting this kind of robot for carrying out qPCR with EC or fluorescence detection, or nanopore sequencing, for rapidly identifying pathogens.


A logical variation of lab-on-a-robot is to attach the lab part to Unmanned Aerial Systems, (more commonly called drones), thus affording a means for “fly-in, fly-out” applications that require speed to and from a location, or for deployment to otherwise inaccessible locations. This biotech version of drone delivery was initially demonstrated for drone pick-up to aerially transport blood samples from patients to central testing labs, as reported by Amukele et al.

Victor Ugaz. Taken from

The much more difficult task of attaching a lab testing module to a drone has been recently demonstrated by Prof. Victor Ugaz and coworkers at Texas A&M University. Their pioneering 2016 publication titled Lab-on-a-drone: toward pinpoint deployment of smartphone-enabled nucleic acid-based diagnostics for mobile health care is loaded with details, and is a “must read” for technophiles. What follows is my extraction of some unique highlights of that work, as well as information I learned by contacting Prof. Ugaz, who incidentally has received numerous awards and honors.

The basic idea investigated by these researchers was to design a drone-compatible system that could perform what I call “qPCR-on-the-fly.” The drone would require low power consumption and use a smartphone for both fluorescence detection—via its camera—and data analysis via radio transmission of results on-the-fly.

To reduce power consumption by conventional PCR using thermal cycling, which uses power for both heating and cooling during each cycle of amplification, the Texas team invented a radically different approach to achieve isothermal PCR. As depicted below, this new method called convective thermocycling operates isothermally at 95oC and involves movement of reactants upward, away from the heater, through progressively cooler regions and then traveling downward to repeat heating, etc. in a cyclic manner.

Taken from Ugaz & coworkers (2016)

They mimicked POC for an Ebola virus epidemic, which required on-site sample prep and then reverse transcription of viral RNA into cDNA prior to hot start qPCR that is incompatible with convective PCR. The sample prep step was very cleverly achieved using centrifuge adapters that connect to the drone in place of propellers. These centrifuges in turn—pun intended—were fabricated using state-of-the-art 3D printing, and are pictured below.

Taken from Ugaz & coworkers (2016)

The in-flight lab-on-a-drone is pictured below. While in-flight, smartphone-enabled qPCR (as depicted above) takes place during the return trip to home base in order to save time for re-equipping the drone to return to another site, thus increasing overall patient analysis throughput per drone.

Taken from Ugaz & coworkers (2016)

I contacted Prof. Ugaz to ask whether the reverse transcription (RT)-PCR could also be carried out in flight to further automate and increase drone throughput. He replied as follows:

“Many thanks for your interest in our work!  For the purposes of these proof of concept studies, we performed the RT and hot start steps off-device in a conventional thermocycler. However, these steps could straightforwardly be embedded in the portable device.  In principle it should be just a matter of either programming the heater to run through these additional steps (in which case we need to consider the thermal transient between steps, since we are trying to keep the device as simple as possible), or possibly have multiple separate heating zones on the device and have the user physically move the reactor from one to another for each step.  There are multiple possibilities to achieve this that can be explored, and the ‘best’ choice is likely related to the specific application that is envisioned.  But to answer your question, yes this is possible as a relatively straightforward extension of the current design…I have a student who will be working on this during the summer.” 

To my surprise and delight, Prof. Ugaz also informed me of his interest in investigating TriLink’s CleanAmp™ technologies for CleanAmp™ hot start PCR and CleanAmp™ hot start RT-PCR. He said that “[w]e are looking forward to testing this soon and will keep you posted!”

This work by Prof. Ugaz will hopefully lead to encouraging results, and provide a great example of how TriLink CleanAmp™ technologies are enabling both scientific advancement as well as an amazingly interesting, new application such as that in this lab-on-a-drone story.

As always, your comments here are welcomed.

Death of DNA Dogma?

  • Current Genetic Dogma is DNA → RNA → Protein
  • Two Research Teams Independently Implicate Sperm Short RNA Can Transmit Paternal Genetics
  • More Research Needed to Elaborate the New Dogma

The Central Dogma of all life on Earth is currently understood to be DNA encoding RNA that in turn encodes protein. That genetic inheritance is transferred as DNA was first posited by uber-famous Francis Crick, who coined the term Central Dogma. While dogmatic principles, by definition, should have no exceptions, a few species of viruses can be considered to be exceptional cases in this regard.

The Central Dogma. Taken from

The Central Dogma. Taken from

That said, there is now quite a scientific buzz—if not shudder by some—over reports implicating RNA molecules as direct (i.e. non-DNA) agents for mammalian inheritance. My instantaneous mental responses to these surprising—if not shocking—revelations was first, “Wow, who would have thunk?” and then, “I’ve got to share this news in a blog.” So here it is.

Surprising Science in Sperm

Human sperm. Taken from

Human sperm. Taken from

While most of us are probably at least passingly familiar with textbook descriptions of the basic structure of sperm and its functional role in reproductive molecular biology, more detailed information on its nucleic acid content is less known. Consequently, shown below is a depiction of the basic structural components of a sperm, DNA content, and primary functions for doing its job, so to speak, in fertilization of an egg.

By way of background, here’s information that I thought was worth sharing. My Google Scholar search results for nucleic acid content of sperm included a very impressive technological accomplishment reported by uber-famous professor/entrepreneur Stephen Quake and co-workers in 2012 on microfluidic separation methods for the first ever genome-wide single-cell DNA sequencing of human sperm. Contrary to what one might intuitively expect, 91 genomes of sperm from a single individual were not identical. Since DNA from only one sperm and one egg combine during fertilization, the exact paternal DNA genotypes in the resultant offspring involves “pot luck,” so to speak.

Regarding RNA, my Google Scholar search led to a paper in 2011 by Krawetz et al. on the first ever report of deep-sequencing of short (18-30 bases) RNA (sRNA) in human sperm (for which TriLink offers a high-performance CleanTag™ kit for sRNA library prep as detailed on this poster). Krawetz et al. found microRNA (miRNA) (≈7%), piwi-interacting RNA (piRNA) (≈17%), and repeat-associated sRNA (≈65%). A minor subset of sRNA within the transcription start site/promoter fraction (≈11%) frames the histone promoter-associated regions enriched in genes of early embryonic development. However, reproductive roles for this molecular menagerie (what I tongue-in-cheek call these various sRNAs) remain speculative.

Fast forwarding to present time leads us to the two “wow” publications in venerable Science that triggered this blog:

While you’ll need to read these publications for details, they collectively raise the following controversial question vis-à-vis the Central Dogma for strictly DNA-based inheritance.

Are You Inheriting More Than Genes from Your Father?

Yes, is the surprising—if not bombshell—answer to this question, which I borrowed from Mitch Leslie’s Science editorial headline. If this conclusion is supported by further studies, it forces a fundamental revision of reproductive molecular cell biology. That’s a very big deal, so to speak, with ramifications not to be under appreciated.

Using sRNA library preparation methods analogous to TriLink CleanTag™ for Illumina deep-sequencing, the USA-Canadian team analyzed sperm from male mice fed a low-protein diet, progeny of which showed elevated activity of genes involved in cholesterol and lipid metabolism. They found that >80% of sRNA were fragments from several kinds of transfer RNAs (tRNAs). Most notably, 5′ fragments of tRNA-Gly-CCC, -TCC, and -GCC shown below all exhibited an approximately 2- to 3-fold increase in low-protein sperm.

Arrows indicate ~30- to 34-nt 5′ tRFs. Taken Upasna Sharma et al. Science (2016)

Arrows indicate ~30- to 34-nt 5′ tRFs. Taken Upasna Sharma et al. Science (2016)

To understand when, where, and how these tRNA fragments were formed, as well as unravel functional significance, the researchers describe an experimental tour de force—in my opinion. This included antisense modified-oligonucleotide “knock-out” of these tRNA fragments, as well as “knock-in” injection of <40-nt sRNA populations purified from control and low-protein sperm into control zygotes.

The researchers concluded that the sperm acquired most of these fragments while passing through the epididymis, a duct from the testicle where the cells mature. Functionally, they also link tRNA fragments to regulation of endogenous retro-elements active in the preimplantation embryo.

In the second study, the China-USA team also found tRNA fragments by deep-sequencing of sRNA. After feeding male mice either a high-fat or low-fat diet, the scientists injected the animals’ sperm into unfertilized eggs, and then measured metabolic performance of the offspring, which ate a normal diet. Progeny of fat-eating fathers remained lean; however, they showed two abnormalities often found in their dads and in humans who are obese or diabetic—abnormal absorption of glucose and insensitivity to insulin.

Like the first study, these researchers also did “knock-in” experiments wherein they inserted the tRNA fragments into eggs fertilized with other sperm. Fragments that came from fathers that ate the high-fat diet resulted in offspring that also showed impaired glucose absorption.

Take Home Messages

At the risk of over simplifying or over generalizing, the aforementioned two studies of sRNA in sperm provide compelling—and stunning—evidence for how tRNA fragments in sperm are responsible for inheritance independent of sperm DNA sequences. So much for dogma.

With regard to specifics, researchers now need to investigate how permanent these changes are, and how quickly they can be reversed by changing diet.

The flip-side of a bad diet adversely influencing offspring is to investigate if and how a good diet imparts better health to offspring.

Please share your thoughts about these reports, conclusion, and implications by commenting here.


If you enjoy hip hop music—or just want to chuckle—this YouTube video for the Central Dogma song will get your head bobbing in sync with the music, lead you to smile, and give you a cool visual display of the central dogma.

National DNA Day 2016 – DNA Dreams Do Come True!

  • Khorana’s Dream of Synthesizing a Gene from Hand-Made Oligos
  • Caruther’s Dream of Automating Oligo Synthesis
  • Venter’s Dream of Fully Automating Gene Synthesis
  • Who’s Dreaming About What’s Next?

DNA Day ImageThis blog acknowledging National DNA Day on April 25th deals with dreams of various sorts, but mainly with gene synthesis, which was only a dream in the 1950s and is now achievable in a way few dreamed possible even a few years ago.

Before I get to DNA gene-dreams that did come true, I want to briefly mention two other dream-like anniversaries. First is the fact that my blog is now beginning its 4th year—yeh!—after its inaugural posting in April 2013 to celebrate 60 years since Watson & Crick’s famous publication of DNA’s helix structure as the fundamental basis for genetic material. Second is this year being TriLink’s 20th anniversary—yeh!—as a leading provider of modified nucleic acids, which co-founders Rick Hogrefe and Terry Beck likely view as their business dream come true. But I digress…

The First Dreamer and Doer Continue reading

Highlights of 2015 Publications Using TriLink BioTechnologies Products

  • Publications Citing TriLink Products Exceed 6,000
  • TriLink Products Showed up at a Rate of One Publication per Work Day
  • Among These Customer Publications, Modified mRNA is Trending
Taken from

Taken from

From my college classes decades ago, I can still clearly recall—thankfully—many “ah ha” moments. Most importantly is when I crystalized to purity and then confirmed structure by NMR the first compound I synthesized in Organic Chemistry Lab. Another ah ha moment—but on a completely different level—was during a philosophy class when the professor partially paraphrased a quote by Aristotle as “we are what we do.” The full quote given above is even more thought provoking because it ties in the notion of excellence, which I took to heart then, and have attempted to live by ever since.

Continue reading

RNA in DNA—Mistake or Mystery?

  • Human DNA Misincorporates >1,000,000 Ribonucleotides Per Replication Cycle
  • These Mistakes are Likely Biological Mysteries
  • Four New Sequencing Methods May Demystify Why There’s “R in DNA”

When I came across a publication on the presence of RNA in DNA my initial reaction, frankly, was great surprise, if not outright disbelief. As the so-called “blueprint” of life, I reckoned that DNA is virtually sacred in terms of its chemical composition, albeit subject to base mutations as well as insertions and deletions of sequence. In other words, I had heretofore been under the impression that DNA’s repeating units are 100% deoxyribonucleotide (and conversely that RNA’s are ribonucleotides), thus giving DNA (and RNA) the eponymous name is has. So, I thought to myself, if that’s reportedly not the case for DNA, what are the facts and implications, i.e., is RNA in DNA just a rare “mistake” or is this yet another example of a “mystery” of Nature. Below is what I’ve learned about this revelation.
Continue reading

We’re Celebrating Click Chemistry In Honor of National DNA Day

  • The Verbification of Click Chemistry 
  • Old Chemistry Morphs into New Applications for DNA and RNA  
  • Amazingly, Phosphorus in DNA and RNA is not Needed for Function 

This post comes only two days after National DNA Day 2015 on April 25th so it’s apropos to feature DNA, but I’d also like to give a nod to the lesser recognized RNA, without which DNA would be akin to music notes in search of a melody.  If you’re a regular reader of this blog, you know my stance on this subject and so I digress…

So-called “Click Chemistry” is trending so “hot” that it has led to a phenomenon known as verbification, which is when a noun becomes a verb by virtue of popularity and linguistic convenience. So, just as Google has become to google for virtually everyone, Click has become to click for synthetic chemists and biotechnologists. Whether or not you’re already familiar with Clicking, I hope to provide herein some interesting snippets about Click, its growing ubiquity, and how it has enabled synthesis of a completely novel, non-phosphorous linkage in DNA that nevertheless functions flawlessly in vivo—a stunning feat never before achieved that has intriguing implications about life. More on that later, but first some snippets about Click.

Continue reading

DNA’s Forgotten Discoverer: Swiss Scientist Friedrich Miescher 

  • Discovered in 1869 in Pus Cells from Bandages of Crimean War Soldiers
  • Miescher Named this New Matter Nuclein and Intuited that it Played a Fundamental Role in Heredity
  • This put the “N” in DNA—Deoxynucleic Acid
  • Children now Isolate DNA from Fruits & Vegetables in Elementary School 

Truth be told, what led me to writing this post was suddenly realizing one day that, although the vast majority of my professional career involves nucleic acids—and DNA in particular—I did not know anything about the discovery of DNA or its naming. My follow-on thoughts were that this was somewhat embarrassing for a blogger focused on nucleic acids, and should be remedied by some homework! This is also good timing since my mind is currently aflutter with all things DNA in anticipation of National DNA Day coming up on April 25. In the event that you recall my past commentary about the bias toward DNA, yes I am still supporting a National RNA Day to balance the ranks, but I digress…

Friedrich Miescher as young man (taken from via Bing Images)

Friedrich Miescher as young man (via Bing Images)

In doing my so-called homework, I learned about Swiss scientist Friedrich Miescher’s life story and circumstances surrounding his discovery in the late 1860s of new matter that he named nuclein, which eventually became incorporated into the term nucleic acid. Those circumstances, including Miescher’s unusual source of nuclein, were quite interesting to me so I thought they’d be worth sharing in this post, which draws upon a lengthy article by Ralf Dahm, who has written extensively about Miescher, and has a website worth visiting.

Continue reading

Liquid Biopsies Are Viewed as “Liquid Gold” for Diagnostics

  • Invasive Needles and Scalpels Seen as Passé
  • Noninvasive Sampling Advocates Focusing on Circulating Tumor Cells (CTCs) 
  • New Companies are Pursuing the Liquid Biopsy “Gold Rush”

Biopsy Basics

Ultrasound is a real-time procedure that makes it possible to follow the motion of the biopsy needle as it moves through the breast tissue to the region of concern, as discussed elsewhere (taken from via Bing Images).

Ultrasound is a real-time procedure that makes it possible to follow the motion of the biopsy needle as it moves through the breast tissue to the region of concern, as discussed elsewhere (taken from via Bing Images).

As defined in Wikipedia, a biopsy is ‘a medical test commonly performed by a surgeon or an interventional radiologist involving sampling of cells or tissues for examination.’ Biopsies can be excisional (removal of a lump or area), incisional (removal of only a sample of tissue), or a needle aspiration (tissue or fluid removal). Despite the value of these traditional types of biopsies, they are more or less invasive, lack applicability in certain instances, and require accurately “going to the source” of concern, as pictured to the right, for ultrasound-guided breast cancer biopsy. Better methodology is highly desirable and is the topic of this post. By the way, if you want to peruse a lengthy list of scary risks associated with various type of common invasive biopsies, click here to see what I found in Google Scholar by searching “incidence of complications from biopsies.”

Continue reading